Источники аминокислот крови

Источники аминокислот крови

Нормальная концентрация аминокислот в крови колеблется от 35 до 65 мг/дл. Это соответствует в среднем 2 мг/дл для каждой из 20 аминокислот, хотя некоторые из них присутствуют в крови в существенно больших количествах, чем другие. В связи с тем, что аминокислоты — относительно сильные кислоты, они присутствуют в крови главным образом в ионизированном состоянии в результате отдачи одного атома водорода от группы NH2.

Количество отрицательно заряженных ионов в крови составляет 2-3 мэкв. Действительное распределение различных аминокислот в крови зависит в ряде случаев от того, какой структуры был съеденный белок, но окончательная концентрация конкретных аминокислот регулируется их избирательным синтезом в различных клетках.

Аминокислоты, всасываемые из желудочно-кишечного тракта. Продукты переваривания и всасывания белков в желудочно-кишечном тракте представлены в основном аминокислотами. Очень редко полипептиды и целые молекулы белка поступают из желудочно-кишечного тракта в кровь. Сразу после еды концентрация аминокислот в крови повышается, но это увеличение в норме составляет всего несколько миллиграммов на децилитр, что объясняется двумя причинами: (1) для переваривания и всасывания аминокислот требуется 2-3 ч, поэтому только небольшое количество аминокислот может всасываться из кишечника сразу после еды; (2) сразу после появления в крови избытка аминокислот в течение 5-10 мин они абсорбируются всеми клетками организма, особенно клетками печени.

В силу этого практически никогда не создается избыточно высокой концентрации аминокислот в крови, они не накапливаются в плазме крови или тканевой жидкости. Более того, скорость кругооборота аминокислот так высока, что основная масса белка может переноситься из одной части организма в другую в виде аминокислот в течение 1 ч.

Активный транспорт аминокислот в клетки. Молекулы аминокислот слишком велики для того, чтобы с легкостью диффундировать через поры в клеточных мембранах, поэтому значительные количества аминокислот могут перемещаться как внутрь, так и наружу через мембраны только путем облегченной диффузии или активного транспорта с использованием переносчиков.

Почечный порог для аминокислот. В почках различные аминокислоты могут активно реабсорбироваться эпителием проксимальных канальцев, который извлекает их из гломерулярного фильтрата и возвращает обратно в кровь, если они смогли профильтроваться в почечные канальцы через мембраны гломерулярного аппарата. Однако существование активного транспортного механизма в канальцевом аппарате предопределяет наличие предела скорости, с которой может транспортироваться каждый вид аминокислот, поэтому в случаях, когда концентрация какой-либо определенной аминокислоты становится слишком высокой в плазме и гломерулярном фильтрате, ее избыток, который не в состоянии реабсорбировать механизм активного транспорта, теряется с мочой.

— Вернуться в оглавление раздела "Физиология человека."

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врождённые и приобретенные нарушения аминокислотного обмена.

  1. Аланин (ALA)
  2. Аргинин (ARG)
  3. Аспарагиновая кислота (ASP)
  4. Цитруллин (CIT)
  5. Глутаминовая кислота (GLU)
  6. Глицин (GLY)
  7. Метионин (MET)
  8. Орнитин (ORN)
  9. Фенилаланин (PHE)
  10. Тирозин (TYR)
  11. Валин (VAL)
  12. Лейцин (LEU)
  13. Изолейцин (ILEU)
  14. Гидроксипролин (HPRO)
  15. Серин (SER)
  16. Аспарагин (ASN)
  17. Alpha-аминоадипиновая к-та (AAA)
  18. Глутамин (GLN)
  19. Beta-аланин (BALA)
  20. Таурин (TAU)
  21. Гистидин (HIS)
  22. Треонин (THRE)
  23. 1-метилгистидин (1MHIS)
  24. 3-метилгистидин (3MHIS)
  25. Gamma-аминомасляная к-та (GABA)
  26. Beta-аминоизомасляная к-та (BAIBA)
  27. Alpha-аминомасляная к-та (AABA)
  28. Пролин (PRO)
  29. Цистатионин (CYST)
  30. Лизин (LYS)
  31. Цистин (CYS)
  32. Цистеиновая кислота (CYSA)

Скрининг аминоацидопатий; аминокислотный профиль.

Синонимы английские

Amino Acids Profile, Plasma.

Метод исследования

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются "протеиногенными" (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Читайте также:  Зумба при грыже позвоночника

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.

Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.

Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает "болезнь кленового сиропа" (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Читайте также:  Зачем сдавать тестостерон женщине

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Для чего используется исследование?

  • Диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.

Когда назначается исследование?

  • При подозрении на нарушение метаболизма аминокислот у детей, в т. ч. новорождённых (рвота, диарея, метаболический ацидоз, особый запах и окраска пеленок, нарушение умственного развития);
  • при гипераммониемии (увеличении уровня аммиака в крови);
  • при отягощенном семейном анамнезе, наличии врождённых аминоацидопатий у родственников;
  • при контроле за соблюдением диетических рекомендаций, эффективности лечения;
  • при обследовании спортсменов (например, бодибилдеров), употребляющих спортивное питание (протеины и аминокислоты);
  • при обследовании вегетарианцев.

Биоматериал: Плазма крови c ЭДТА

Взятие биоматериала: 190 руб.

Срок исполнения: 4 дн

Аминокислоты в крови являются особыми структурными химическими единицами, которые образуют белки. Многие из них вырабатываются в печени, но некоторые не могут быть синтезированы, поэтому их необходимо восполнять с пищей. Помимо того, что они участвуют в образовании белков, входящих в состав тканей и органов организма человека, некоторые из них:

  • Нужны в метаболизме, иммунных и ферментативных реакциях большинства биологических веществ, процессах детоксикации, а также они выполняют регуляторную функцию и другие.
  • Непосредственно снабжают мышечные ткани энергией.
  • Являются нейромедиаторами (биологически активными компонентами, при помощи которых от нервной клетки осуществляется передача электрического импульса) или их предшественниками.
  • Способствуют тому, что минералы и витамины в полной мере справляются со своими функциями.

Если организм человека испытывает нехватку одной из аминокислот, то начинаются серьезные проблемы, которые приводят к депрессии, ожирению, почечной недостаточности, проблемам с пищеварением и т.д., вплоть до замедления роста и развития. В особой группе риска находятся спортсмены, поддерживающие положительный азотный баланс при помощи анаболических препаратов и спортивного питания. В силу исключения из рациона многих необходимых продуктов туда попадают также вегетарианцы, веганы и худеющие при помощи диет специфического характера.

Анализ на аминокислоты в крови и моче признан незаменимым способом оценки и определения достаточного их содержания, степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе хронических заболеваний печени, почек, дыхательных органов, сердечно-сосудистой системы.

Функции основных аминокислот

Аминокислоты включают в себя 12 показателей: аргинин, аланин, аспарагиновую и глутаминовую кислоты, цитруллин, метионин, глицин, орнитин, валин, фенилаланин, тирозин, отношение – лейцин/изолейцин.

Читайте также:  Для чего нужно растягивать мышцы

  • Аланин участвует в нормализации метаболизма углеводов и является составной частью пантеноловой кислоты (витамин В5) и коэнзима А, который производит необходимую энергию для мышечной деятельности. Он замедляет рост новообразований, в том числе злокачественных, за счет стимуляции иммунной системы. Увеличивает размер и улучшает активность вилочковой железы, которая вырабатывает Т-лимфоциты (защищают организм от опухолевых клеток и сигнализируют о начале синтеза антител), а также улучшает детоксикационные процессы в печени (обезвреживание аммиака).
  • Аргинин — важнейший компонент в обмене веществ мышечной ткани. Он помогает в поддержании оптимального азотного баланса, так как участвует в обезвреживании и транспортировке избыточного азота в организме.
  • При помощи аспарагин- амид аспарагиновой кислоты образуются связи в токсическом аммиаке. Она находится в свободном виде в составе белков и играет особую роль в обмене азотистых веществ, образовании мочевины и пиримидиновых оснований. Оказывает иммуномодулирующее биологическое действие, стабилизирует баланс торможения и возбуждения в ЦНС, повышает выносливость и др.
  • Глутаминовая кислота — это передающий импульсы в ЦНС нейромедиатор. Она улучшает проникновение кальция через гематоэнцефалический барьер и может использоваться клетками головного мозга как источник энергии, поскольку имеет важное значение в процессе углеводного обмена. Она также отнимает атомы азота в процессе образования глутамина, тем самым обезвреживая аммиак.
  • Цитруллин не входит в состав белков. Он вырабатывается в печени в процессе превращения аммиака в мочевину и биосинтеза аргинина в качестве побочного продукта. При патологически повышенной концентрации оказывает токсическое воздействие. Ребенок с врожденным недостатком одного из ферментов, предназначенных для химического расщепления белков в моче, плохо развивается. У него может наблюдаться ярко выраженная задержка умственного развития, поскольку вследствие нарушений в крови происходит накопление аминокислоты цитруллина и аммиака.
  • Глицин снижает дегенерацию мышечной ткани, поскольку является источником вещества, содержащегося в мышцах и используемого при синтезе ДНК и РНК — креатина. Выполняет функцию тормозного нейромедиатора и предотвращает эпилептические судороги. Он служит для синтеза желчных и нуклеиновых кислот, а также заменимых аминокислот.
  • Метионин принимает участие в переработке и устранении жировых отложений в стенках артерий и в печени. Синтез цистеина и таурина зависит от количества метионина в организме. Он улучшает пищеварение, защищает от воздействия радиации, обеспечивает детоксикационные процессы, уменьшает мышечную слабость, полезен при химической аллергии и остеопорозе.
  • Орнитин помогает высвобождению гормона роста, способствующего сжиганию жиров. Такой эффект усиливается с применением орнитина в совокупности с карнитином и аргинином. Он также необходим для работы иммунной системы, участвует в восстановлении печеночных клеток и детоксикационных процессах.
  • Фенилаланин превращается в тирозин, который используется в синтезе двух основных нейромедиаторов: норадреналина и допамина. Поэтому он оказывает влияние на настроение, улучшает память, уменьшает боль и повышает способность к обучению, подавляет чрезмерный аппетит. Его применяют в лечении артрита, болей при менструации, депрессии, ожирения, мигрени, болезни Паркинсона.
  • Тирозин — является предшественником нейромедиаторов дофамина и норадреналина, и очень важен при обмене фенилаланина. Он участвует в регуляции настроения; его дефицит приводит к нехватке норадреналина, что выражается в депрессивном состоянии. Тирозин способствует уменьшению жировых отложений, снижает аппетит и улучшает выработку мелатонина (он борется со старением и отвечает за здоровый сон), функции эндокринной системы, надпочечников и гипофиза. Тиреоидные гормоны образуются при соединением с тирозином атомов йода.
  • Валин оказывает стимулирующие действие и служит для восстановления целостности тканей, метаболизма в мышцах и поддержания нормального обмена азота в организме. Относится к группе разветвленных аминокислот и используется мышцами в качестве источника энергии. Его также часто применяют при выраженной нехватке аминокислот, возникшей в результате привыкания к определенным препаратам. Его переизбыток может привести к таким симптомам, как ощущение мурашек на коже (парестезия) и даже к галлюцинациям.
  • Изолейцин — одна из трех разветвленных аминокислот, которая служит для синтеза гемоглобина. Она помогает в регуляции и стабилизации сахара в крови, а также поддерживает энергетические процессы. Метаболизм изолейцина происходит в мышечной ткани. Он нужен при многих психических заболеваниях, нехватка этой аминокислоты приводит к появлению схожих с гипогликемией симптомов.
  • Лейцин также относится к группе разветвленных аминокислот. В совокупности они помогают защищать мышечные ткани и обеспечивают энергией, а также способствуют восстановлению, костей, мышц и кожи. Именно поэтому их рекомендуют принимать в послеоперационный период или после различных травм. Лейцин немного понижает уровень сахара и стимулирует выделение гормона роста. Его переизбыток может увеличить содержание аммиака в организме.

Причины и последствия нарушений концентрации аминокислот в крови

Исследования врачей показали, что нехватка аминокислот приводит к недостаточности всех синтетических процессов в человеческом организме. Быстрообновляющиеся системы (гуморальная и половая, костный мозг и др.) страдают в особенности.

Наследственные нарушения, характеризующиеся изменением концентрации аминокислоты в крови и ацилкарнитинов представляют собой наиболее многочисленную гетерогенную группу болезней метаболизма (тирозинемия, ФКУ, гистидинемия, гиперглицинемия и др.). Значения точной лабораторной диагностики этих заболеваний определяется тем, что часто их формы имеют схожую клиническую картину, что усложняет процесс выявления болезни. Избыточное накопление и повышение уровня многих аминокислот имеет токсическое воздействие.

Ссылка на основную публикацию
Инъекции для пожилых людей
Из этой статьи вы узнаете: Почему стоит проявлять осторожность, покупая препараты для пожилых людей В какой ситуации оказывает пожилой пациент,...
Имбирь аллерген или нет
Люди, не понаслышке знающие, что такое пищевая аллергия, с опаской относятся к употреблению в пищу различных приправ. Не все пряности...
Имбирь в термосе для похудения
Азиатские блюда и напитки благоухают имбирем. Растение используется больше трех тысяч лет, его согревающий аромат прошел проверку временем. В современном...
Инъекции для роста мышц
Под гормоном роста понимают вещество, выделяемое передней долей гипофиза. Альтернативные названия – соматотропин, СТГ. Свое имя секрет, поставляемый «главной железой»,...
Adblock detector